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Abstract. Climate change is an urgent global challenge, yet public opinion on the issue
remains highly polarized and poses challenges to achieving the broad public support needed
for effective climate action. While the literature has established relationships between cli-
mate opinion and factors such as education, partisanship, and local industry, there is less
consensus on the role of experiential cues – especially extreme weather. Methodological
challenges, including the failure to account for spatial dependence, have limited our under-
standing of how extreme weather shapes climate opinion. To address this gap, we apply
spatial econometric techniques to evaluate both the direct and indirect effects of extreme
weather on climate change beliefs and risk perceptions. We find that extreme weather events
exert a significant direct effect on beliefs and risk perceptions, with the former also exhibit-
ing measurable spatial spillovers. Additionally, extreme weather has a stronger direct effect
on beliefs than long-term temperature changes. However, spatial spillovers are absent in the
formation of risk perceptions, underscoring the importance of personal experience in driving
individual safety concerns. Our findings highlight the nuanced mechanisms by which expe-
riential cues shape climate opinion and the importance of accounting for spatial dependence
in empirical studies. These insights have practical implications for climate communication
and disaster preparedness, particularly as climate change shifts the spatial distribution of
extreme weather events across the United States.
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1. Introduction

Scientific evidence regarding climate change is clearer than ever: The earth’s climate is

changing, these changes are attributable to human activity, and urgent action is required to

prevent catastrophic damages in the future (Intergovernmental Panel On Climate Change

(IPCC) (2023)). And yet, in stark contrast to the scientific consensus, climate change re-

mains a divisive topic both within and across political boundaries. This is particularly true

within the United States, with public opinion estimates from the Yale Program for Climate

Communications (Howe et al. (2015)) revealing sharp divides amongst Americans. While

there is near universal agreement that climate change is happening in some US counties (for

example, 86.7% of adult residents in San Francisco County, California are estimated to be-

lieve that global warming is occurring), skepticism is relatively common in many others (for

example, at least one-in-three adults are estimated to not believe in global warming in 64.8%

of US counties). Meanwhile, risk perceptions are similarly variable, with the percentage of

the adult population estimated to believe that climate change will harm them personally

ranging from as low as 31.4% in Pleasants County, West Virginia to as high as 63.4% in

Bronx County, New York.

These observations pose a major challenge to the environmental ambitions of the United

States, including its commitment under the Biden administration to achieve net-zero green-

house gas emissions by 2050 (US Department of State (2021)). Social movements have been

central to societal change throughout human history, including environmental activism which

has been effective in catalyzing climate action by individuals (Ballew et al. (2024)), firms

(Haslam and Godfrid (2023), Lenox and Eesley (2009)), and governments (Olzak and Soule

(2009)). However, such movements require sufficiently broad, active, and persistent public

support (Snow et al. (2008)) – factors that the Yale Program for Climate Communications’

public opinion estimates reveal are unevenly distributed across US counties.

In this paper, we study the role of extreme weather in shaping public perceptions of

climate change – inclusive of both beliefs and risk perceptions – at the US county level. This

mechanism is firmly grounded in theories of learning and attitude formation. According to

Kolb’s experiential learning theory (Kolb (1984)), individuals form, test, and refine their

judgements based on concrete experiences and observations. By placing an individual’s

interactions with their external environment at the heart of the learning process, it thus

suggests that weather – a tangible, daily phenomenon that everyone is exposed to – provides

a signal that may inform individuals’ attitudes toward climate change.

Meanwhile, dual process theories (Kahneman (2013)) draw a distinction between two

modes of information processing: heuristic (or type 1) processing is fast and instinctive,

while systematic (or type 2) processing is slow and deliberative. According to the heuristic-

systematic model of attitude formation (Chaiken (1980), Chaiken and Stangor (1987), Chaiken
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and Ledgerwood (2012)), individuals are effort minimizers and face cognitive constraints in

their ability to engage in systematic processing, both of which position heuristic processing

as the default mode of information processing. Because climate change often takes a backseat

to more immediate daily concerns and engaging with scientific evidence is cognitively chal-

lenging (Marx et al. (2007), Weber and Stern (2011)), informational cues that are suitable

for heuristic processing may therefore play an outsized role in shaping climate opinion. It

thus follows that extreme weather events – which are vivid, emotionally salient, and concep-

tually aligned with climate change – are not only a feasible mechanism for shaping climate

opinion, but perhaps also a particularly likely one.

We are not the first to study this phenomenon, but the presence and characteristics of these

effects continue to be debated after more than a decade of research. On the one hand, several

studies have found evidence that greater exposure to extreme weather increases climate

change beliefs and risk perceptions (Konisky et al. (2016), Hughes et al. (2020), Sloggy et al.

(2021)). However, many others fail to identify statistically significant relationships between

extreme weather and climate opinion (Brulle et al. (2012), Cutler (2016), Carmichael and

Brulle (2017), Lyons et al. (2018)). In light of the strong theoretical basis for experiential

learning effects in this setting, these conflicting results are somewhat surprising.

As pointed out by Howe et al. (2019)), one potential explanation for these conflicting

results is that previous studies have failed to account for spatial dependence in the cli-

mate opinion formation process. Spatial dependence may arise in this setting for a variety

of reasons, including social learning between socially connected counties (Bandura (1977),

Moussäıd et al. (2013), Bailey et al. (2018)) and exposure to out-of-county informational

cues through the news media (Ardia et al. (2020)) or due to migration (Ambinakudige and

Parisi (2017)). Crucially, ordinary least squares is ill-suited to evaluating empirical relation-

ships in which a spatially lagged dependent variable is present in the true data generating

process, typically1 resulting in simultaneity bias when the spatially lagged term is included

(Anselin (2022)) and omitted variable bias when it is excluded (Anselin and Bera (1998)).

However, despite these challenges, previous studies of extreme weather and climate opin-

ion have chosen to adopt ordinary least squares and omit spatially lagged terms without

conducting specification tests that could rule out spatial dependence.

This paper addresses this methodological gap by adopting techniques from the spatial

econometrics literature (Paelinck and Klaassen (1979), Anselin (1988), LeSage and Pace

(2009)), including approaches for modeling the relationship between observational units,

testing for spatial dependence, specifying spatial effects in econometric models, and inter-

preting coefficient estimates in such models. The utility of this approach is twofold. First,

1With the exception of spatial weight structures in which each observational unit is treated as a neighbour
of every other observational unit (see Lee (2002)), simultaneity bias arises in this setting due to non-zero
covariance between the spatially lagged dependent variable and the error term.
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it allows us to recover unbiased coefficient estimates that describe the direct, experiential

learning effect of extreme weather on climate opinion even if spatial dependence is observed.

Second, it allows us to also estimate the indirect effect that extreme weather in one county

exerts on climate opinion in other counties. These indirect effects are often referred to as spa-

tial spillovers and are of significant interest in a wide variety of settings. By adopting these

techniques, this paper mirrors the contribution of Kaufmann et al. (2017) to the literature

on local warming and climate opinion.

Our results help settle this more than decade-long debate while also revealing important

nuances in the climate opinion formation process that were not addressed by previous studies.

First, they show that residents of US counties that experience more severe extreme weather

are more likely to believe that climate change is happening. We refer to this as the direct

experiential learning effect of extreme weather on climate change beliefs. Second, by also

incorporating the temperature heuristics proposed by Kaufmann et al. (2017) into our econo-

metric specifications, we find that the direct experiential learning effect of extreme weather

on climate change beliefs is two to three times larger than that of longer-term changes in tem-

perature. Third, extreme weather distinguishes itself from temperature-based experiential

cues in our results by also producing a direct experiential learning effect on risk perceptions.

And fourth, our results demonstrate that spatial spillovers arise in the formation of climate

change beliefs, but not risk perceptions.

These findings have important implications for climate communications and disaster pre-

paredness efforts in the United States. While improving public awareness of extreme weather

events in other parts of the country is enough to increase climate change beliefs, it takes

personal experience to elicit a risk response. Gaining public support for proactive disaster

preparedness measures may therefore be challenging in communities that have historically

experienced low levels of extreme weather. This is a major practical concern as changes

in the spatial distribution of extreme weather in the United States (Peterson et al. (2013),

Seager et al. (2015), Trenary et al. (2016), Huang et al. (2018)) mean that many of these

communities are increasingly at risk. Climate communicators must therefore find alternative

avenues for increasing public awareness of future disaster risks, particularly in emergent high

risk areas.

This paper proceeds as follows. In Section 2, we summarize our data. We then outline our

empirical strategy in Section 3 and discuss the results of our econometric specifications in

Section 4. Concluding remarks are offered in Section 5. Supplementary material is included

in the appendices, including a more in-depth discussion of the broader literature on climate

opinion through the lens of relevant psychological theories (Appendix A) and additional

technical materials (Appendix B).
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2. Data

2.1. Climate Opinion Data. We obtain data on US county-level climate opinion in 2021

from the Yale Program for Climate Communications (YPCC) (Howe et al. (2015)). In their

US Climate Opinion Maps (USCOM), they provide the first and only spatially resolved

estimates of climate change beliefs, risk perceptions, and policy preferences in the United

States. In this study, we focus our attention on estimates in the former two categories. First,

we consider county-level climate change beliefs, where %Beliefc is the estimated percentage

of the adult population in county c that answers “yes” to the question “do you think that

global warming is happening?” And second, we consider county-level climate change risk

perceptions, where %Riskc is the estimated percentage of the adult population in county

c that answers “a moderate amount” or “a great deal” to the question “how much do you

think global warming will harm you personally?”

Summary statistics for %Beliefc and %Riskc are illustrative of the divisive nature of

climate opinion within the United States (see Table 1). Comparisons of %Beliefc and %Riskc

across counties reveal sharp geographic divides in climate opinion. While less than half of the

adult population believes in climate change in some counties (e.g., %Beliefc = 45.287% in

Lawrence County, Kentucky), there is a strong consensus in many others (e.g., %Beliefc =

86.748% in San Francisco County, California). County-level climate risk perceptions are

similarly variable, ranging from as low as 31.397% to as high as 63.372%. These estimates also

highlight significant within-county divisions, with climate change beliefs and risk perceptions

hanging in the balance in many counties. For example, half of US counties have %Beliefc

values between 45.287% and 64.512% and half have %Riskc values between 39.974% and

63.372%.

Table 1. Summary Statistics

Statistic n Mean Median St. Dev. Min Max

%Beliefc 3,108 65.199 64.512 6.156 45.287 86.748
%Riskc 3,108 41.175 39.974 5.071 31.397 63.372
HealthImpact30,c 3,108 0.300 0.107 1.169 0.000 38.166
AssetImpact30,c 3,108 9.401 1.546 52.088 0.000 1,280.175
TMaxc 3,108 202.165 205.053 29.828 95.774 298.010
High2016c 3,108 23.195 20.935 12.086 0.000 126.710
Low2016c 3,108 10.371 8.994 6.768 0.000 98.376
%Bachelorc 3,108 23.006 20.500 9.931 0.000 78.700
%OilGasMiningc 3,108 1.042 0.017 3.162 0.000 42.545

Further inspection also reveals that climate opinion in the United States is spatially clus-

tered, reflective of broader regional divides in both beliefs and risk perceptions. Clusters of

high and low values are clearly observed in choropleth maps of both %Beliefc and %Riskc
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(see Figures 1 and 2, respectively), with high levels of belief and risk perceptions tending

to occur in urban and coastal regions and low levels tending to occur in parts of the Mid-

west and Southeast. These visual patterns are further supported by Moran’s I test statistics

(Moran (1948)) (see Table 2), which confirm significant positive spatial autocorrelation for

both variables. This observation is robust to spatial weight specifications based on both

social (WS,10) and geographic distance (WG,10)
2.

Figure 1. County-level variation in %Beliefc, the percentage of the adult popula-
tion in county c that believes that global warming is happening.

Figure 2. County-level variation in %Riskc, the percentage of the adult population
in county c that believes that global warming will harm them personally.

Finally, as these are survey-based estimates (see Appendix B.1), we note that researchers

are limited with respect to the hypotheses they can meaningfully explore using this data. For

instance, consider the inclusion of socioeconomic variables such as educational attainment

2see Section 2.5 for more information on the spatial weight specifications utilized in this paper.
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Table 2. Global Moran’s I test statistic and variance under two alternative spatial
weight specifications

Statistic I(WS,10) I(WG,10)

%Beliefc 0.550∗∗∗ 0.508∗∗∗

(0.000) (0.000)
%Riskc 0.598∗∗∗ 0.553∗∗∗

(0.000) (0.000)
HealthImpact30,c 0.101∗∗∗ 0.094∗∗∗

(0.000) (0.000)
AssetImpact30,c 0.235∗∗∗ 0.273∗∗∗

(0.000) (0.000)
TMaxc 0.529∗∗∗ 0.450∗∗∗

(0.000) (0.000)
High2016c 0.526∗∗∗ 0.451∗∗∗

(0.000) (0.000)
Low2016c 0.495∗∗∗ 0.426∗∗∗

(0.000) (0.000)
%Bachelorc 0.435∗∗∗ 0.410∗∗∗

(0.000) (0.000)
%OilGasMiningc 0.416∗∗∗ 0.400∗∗∗

(0.000) (0.000)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

as predictor variables in the multi-level regression and post-stratification (MRP) process

deployed by Howe et al. (2015). Subsequent empirical specifications relating these variables

at the county-level would simply recover coefficient estimates which are reflective of (but,

due to differences in the unit of observation, do not exactly coincide with) the coefficient

estimates obtained from the statistical model estimated by Howe et al. (2015). However,

despite this limitation, alternative hypotheses can be explored using these survey-based

estimates contingent on two conditions being met. First, the variables of interest must not

have been included as covariates in the statistical model estimated by Howe et al. (2015),

and second, the effects of these variables must have been captured in the county fixed effects

included in their model as a control for unobserved county-level variation. Just as Kaufmann

et al. (2017) argue that the county-level temperature heuristics that they propose meet these

criteria, so too do we for county-level climate heuristics related to extreme weather.

2.2. Measuring a County’s Historical Extreme Weather Exposure. We obtain data

on the date, affected locations, and impacts of extreme weather events in the United States

between 1960 and 2021 from the Spatial Hazard Events and Losses Dataset for the United

States (SHELDUS) (ASU Center for Emergency Management and Homeland Security (2023)).
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We use this data to construct heuristics which describe two salient aspects of a county’s his-

torical exposure to extreme weather: adverse health outcomes and damages to physical

assets.

For the first heuristic, we focus our attention on the number of injuries and fatalities

attributable to extreme weather within each county. We first query SHELDUS to access

aggregate injury and fatality statistics by county c and year t. To consolidate these into

a single measure, we treat one injury as equivalent to one-tenth of a fatality, consistent

with the approach employed by the United States Federal Emergency Management Agency

(FEMA) in the calculation of the National Risk Index (Zuzak et al. (2022)). We then define

the set H as the h years preceding the measurement of our dependent variable and calculate

the heuristic HealthImpacth,c as follows:

HealthImpacth,c =

∑
t∈H

HealthImpactc,t

h
(1)

A unit increase in HealthImpacth,c is equivalent to 1 additional fatality or 10 additional

injuries per year, averaged over the preceding h years.

The second heuristic, AssetImpactc,h, measures the average annual value of extreme-

weather related crop and property damages (in millions of constant 2021 US dollars) over

the preceding h years. We begin by querying SHELDUS to access crop and property damage

statistics by county c and year t (denoted AssetImpactc,t) before calculating the heuristic

AssetImpacth,c as follows:

AssetImpacth,c =

∑
t∈H

AssetImpactc,t

h
(2)

A unit increase in AssetImpacth,c is equivalent to an additional $1 million in extreme

weather-related crop and property damages annually, averaged over the preceding h years.

While these heuristics are constructed to describe two important aspects a county’s his-

torical exposure to extreme weather, the horizon over which individuals assimilate these

experiences is unclear. We thus calculate these heuristics over three horizons (h = 20, 30,

and 40 years), adopting the 30-year horizon as our baseline specification and evaluating the

robustness of our results across these horizons.

Summary statistics for HealthImpact30,c and AssetImpact30,c are presented in Table

1. On average, counties experience the equivalent of 0.3 extreme weather-related fatali-

ties (HealthImpact30,c) and $9.4 million in property and crop damages (AssetImpact30,c)

per year. However, the median values for both heuristics are significantly lower – 0.107

for HealthImpact30,c and $1.546 million for AssetImpact30,c – indicating that a relatively
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small number of counties face disproportionately large impacts. This observation is further

reinforced by the maximum values of each heuristic, with some counties experiencing the

equivalent of 38.166 extreme weather-related fatalities or $1.28 billion in damages annually.

The skewed nature of counties’ historical exposure to extreme weather is reflective of spa-

tial heterogeneities in the frequency, types, and severity of extreme weather events, as well

as variations in county characteristics such as population, landmass, and economic activ-

ity. These disparities underscore the importance of accounting for heteroskedasticity in our

empirical strategy, as is discussed further in Section 3.

Both extreme weather heuristics also exhibit significant spatial clustering, as indicated by

Moran’s I (Table 2). Positive and statistically significant Moran’s I test statistic values for

both HealthImpact30,c and AssetImpact30,c suggest that counties with higher or lower rates

of extreme weather-related injuries and fatalities and damages are likely to be geographically

or socially proximate. These patterns are reflective of the regional scale of extreme weather

events such as hurricanes and droughts and highlight the need to explicitly account for spatial

dependence in our empirical strategy.

2.3. Temperature Data. In order to assess the role of extreme weather in shaping climate

opinion independent of (and relative to) changes in temperature, we reconstruct the heuristics

for local changes in temperature proposed by Kaufmann et al. (2017) using more recent data.

As outlined in Appendix A.2, these heuristics describe local changes in temperature based on

the relative timing of record high and low temperatures and were found to partially account

for the observed spatial variation of climate change beliefs at the US county level.

To calculate the heuristics, we obtain data on daily high and low temperatures for 69,604

weather stations in the United States from the Global Historical Climatology Network -

Daily (GHCN-d) database (Menne et al. (2012)). Because the number of years for which

data are available and the number of missing observations affect the heuristic values, we

classify each station by these variables and retain only those with a minimum of 40 years

of data and at most 10 missing observations. This is consistent with an intermediate case

in Kaufmann et al. (2017), who demonstrated the robustness of their results to alternative

horizons and missing value thresholds.

The heuristics for local changes in temperature are then calculated for each weather station

s in our sample as follows:

TMaxs =
365∑
D=1

1(HighDs>LowDs) (3)

High2016s =
365∑
D=1

[1(HighDs>LowDs) × 1(HighDs≥2016)] (4)
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Low2016s =
365∑
D=1

[1(LowDs>HighDs) × 1(LowDs≥2016)] (5)

where D denotes the day of the year, HighDs and LowDs denote the years of the record high

and low temperatures on day D at station s, and 1 denotes an indicator function. Station-

level heuristic values are then mapped to US counties in geographical information system

(GIS) software using the method described in Appendix B.2.

TMaxc measures the local change in climate in county c as the number of days of the

year for which the year of the record high temperature is more recent than the year of the

record low temperature. A value of 182 thus signifies no change in temperature, whereas

smaller and larger values connote local cooling and warming, respectively. Because of its

clever construction, this heuristic has attractive distributional properties under the null

hypothesis of a non-changing climate. Specifically, under this null hypothesis there is an

equal probability that, for a given day of the year, the record high temperature or the record

low temperature will have occurred most recently. Summing over 365 days, the distribution of

TMaxc in the sample is thus expected to coincide with the binomial distribution (n = 365,

p = 0.5) under the null. However, as illustrated in Figure 3, this is not the case for the

observed distribution of TMaxc. On the one hand, more counties exhibit values of TMaxc

which are indicative of a warming climate than would be expected under random chance.

For example, while only 0.5% of the counties are expected to observe TMaxc values greater

than 207 in a non-changing climate, 47.1% of counties do so in our sample. On the other

hand and much more surprisingly, many other counties exhibit evidence of local cooling. 8%

of counties exhibit TMaxc values of less than 157 in our sample, a threshold past which only

0.5% of counties would be expected to fall below by chance in a non-changing climate. These

observations are consistent with those of Kaufmann et al. (2017), although they signify a

marginal distributional shift toward more local warming.

High2016c and Low2016c then differentiate themselves from TMaxc by measuring the

recency of local warming and cooling. They do so as simple counts of the number of days

for which record high and low temperatures are observed in the five years preceding the

measurement of our dependent variable. Similar to Kaufmann et al. (2017), the mean values

of High2016c (23.195) and Low2016c (10.371) suggests record high temperatures are more

than twice as likely to occur than record low temperatures on average in the past five

years. Summary statistics can be found in Table 1. We also note that Moran’s I test

statistics for TMaxc, High2016c, and Low2016c are indicative of significant positive spatial

autocorrelation (see Table 2), with spatial heterogeneity and clustering clearly visible in

Figure 4.
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Figure 3. A histogram of observed county-level TMax values (TMaxc) is plotted
against the fraction of observations for a given level of TMax expected under the
null hypothesis of no climate change. Areas in red represent the fraction of stations
where TMax indicates warming, whereas areas in blue represent the fraction of
stations where TMax indicates cooling. We note that more stations exhibit TMax
values consistent with both local warming and local cooling than anticipated under
the null hypothesis of a non-changing climate.

Figure 4. County-level variation in TMaxc

2.4. Controls Data. As discussed in Appendix A.2, previous research has established a ro-

bust relationship between climate opinion and individual-level covariates such as educational

attainment and industry of employment. In alignment with this evidence, these variables
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were incorporated by Howe et al. (2015) to construct the county-level climate opinion es-

timates used in this study (see Section 2.1 and Appendix B.1 for more details). We thus

source data on these variables at the county level in order to include them as controls in our

empirical specification. We obtain data on educational attainment from the 2021 American

Community Survey through the US Census Bureau (accessed September 10, 2023), defining

%Bachelorc as the percentage of the adult population in county c which has completed a

Bachelor’s degree or higher. For industry of employment, we define %OilGasMiningc as

the percentage of the county’s total labour force employed either full- or part-time in the

mining, quarrying, and oil and gas extraction sector (as categorized by the North American

Industry Classification System). This data is sourced from the US Bureau of Economic Ac-

tivity (accessed September 10, 2023). Summary statistics and Moran’s I test statistic values

for these variables are included in Tables 1 and 2, respectively.

2.5. Modeling the Interaction Between Observational Units. As discussed in Section

1, spatial dependence may arise in county-level climate opinion formation for a variety of

reasons and results in challenges with statistical inference. Spatial econometrics – introduced

by Paelinck and Klaassen (1979), advanced by Anselin (1988), and summarized more recently

by LeSage and Pace (2009) – was established to address these challenges and one of its

defining features is the explicit modeling of the neighbour relation. The neighbour relation

between n observational units is represented by an n × n matrix W, where each element

defines the relative influence or proximity between two observational units. This matrix

is used to construct spatially lagged dependent (Wy) and independent (WX) variables,

and plays a critical role in spatial econometrics. Moreover, spatial weight matrices are

foundational to a variety of specification tests, including Moran’s I (Moran (1948), Moran

(1950)) and Anselin’s lagrange multiplier test statistics (Anselin et al. (1996)), which are

essential for identifying and quantifying spatial dependence in this setting.

But how does one determine which neighbour specification to use? This is an important

lingering question and crucial shortcoming in the spatial econometrics literature (Leenders

(2002), Elhorst (2010)). While approaches to assist with the ex ante selection of a spatial

weight specification would be a welcome addition to the literature, no methods have gained

widespread acceptance to date. Instead, it is common practice to select the optimal spatial

weight specification based on a goodness-of-fit criteria ex-post (Stakhovych and Bijmolt

(2009)) and evaluate the robustness of one’s results to alternative spatial weight specifications

(Ertur and Koch (2007)). In this paper, we adopt this approach by constructing an extensive

set of spatial weight matrices, denoted byW, and incorporating them into the model selection

framework described in Section 3.

Spatial weight matrices based on the geographic distance between observational units are

standard in the literature, as noted by LeSage and Pace (2009). Building on the approach
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by Kaufmann et al. (2017), who focus on a 5-nearest neighbour spatial weight specification

in their study of how local changes in temperature shape climate opinion at the US county

level, we construct k-nearest neighbour weight specifications for k = 1, ..., 500. As the name

suggests, these spatial weight matrices define the neighbour relation by connecting each

observational unit to its k-nearest geographic neighbours, as measured by Euclidean distance

between the centroids of observational units. For an n× n matrix W, the (i, j)th element of

W (wi,j) equals 1 if county j is among the k-nearest neighbours of county i and 0 otherwise.

This matrix is then typically row-standardized such that
n∑

j=1

wi,j = 1 ∀ i ∈ (1, ..., n), resulting

in the attractive property that the spatial lag WZ can be interpreted as the average value

of the variable Z in the neighbouring counties (as defined by W). To construct these k-

nearest neighbour spatial weight matrices, we first obtain cartographic boundary files for US

counties (2021 delineation) from the US Census Bureau (accessed September 10, 2023) and

extract the coordinates of the centroid of each county in QGIS3. The resulting coordinates

were then used to compute weight matrices for k = 1, ..., 500 as described above using the

knn2nb function in R’s spdep package.

LeSage and Pace (2009) also note, however, that the concept of a spatial weight matrix can

be generalized to account for non-spatial structured dependence. This approach has been

used to study peer institution effects in wage setting (Blankmeyer et al. (2007)) and coordi-

nation amongst socially-connected peers in a non-cooperative game (Ballester et al. (2006)),

and is closely aligned with the Katz-Bonacich Centrality (Katz (1953), Bonacich (1987))

in the social networking literature. Motivated by the strong theoretical (Bandura (1977))

and experimental (Moussäıd et al. (2013)) basis for social influence in the climate opinion

formation process, we therefore supplement the set of more typical spatial weight matrices

based on geographic distance with a set based on a measure of social distance. To define

the social distance between US counties, we leverage Data for Good’s Social Connectedness

Index (Bailey et al. (2018)). It is defined as follows:

Socialij =
Connectionsi,j
Usersi × Usersj

(6)

where Connectionsi,j is the total number of Facebook connections between users in counties

i and j and Usersk is the number of Facebook users in county k in October 2021. The

Social Connectedness Index – scaled between 1 and 1,000,000,000 – measures the relative

probability of a Facebook friendship between users in counties i and j. For example, if

Sociali,j is twice as large as Sociali,k, then a Facebook user in county i is twice as likely to

be connected with a user in county j than in county k. To construct spatial weight matrices

based on this measure, we first construct an n× n matrix such that element wi,j = Sociali,j

for j ̸= i and zero otherwise. We then truncate this matrix such that wi,j = 0 if county j

3QGIS is a free geographic information system software that can be accessed at www.QGIS.org.
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is not one of county i’s k-nearest social neighbours, doing so for k ∈ (1, ..., 500). Finally,

we divide each element by its row sum such that
n∑

j=1

wi,j = 1 ∀ i ∈ (1, ..., n), denoting the

resulting matrices by WS,k. The spatial lag WS,kZ can thus be interpreted as the weighted

average of Z in its k nearest social neighbours.

3. Empirical Strategy

Bearing in mind the theoretical and empirical basis for spatial dependence discussed in

Section 1 and Appendix A, we leverage empirical tools from the spatial econometrics litera-

ture to assess the relationship between US county-level climate opinion and the consequences

of extreme weather.

First, we estimate our specifications of interest under the assumption of cross sectional

independence and assess whether this assumption is valid. To do so, we begin by estimating

the following non-spatial specifications by ordinary least squares (OLS):

y = Xβ + u (7)

in which y is a vector of either county-level climate beliefs (%Belief) or risk perceptions

(%Risk) as defined in Section 2.1 and X is a matrix containing various combinations of

extreme weather heuristics (as defined in Section 2.2), temperature heuristics (as proposed

by Kaufmann et al. (2017) and defined in Section 2.3), and educational and industry controls

(as defined in Section 2.4). β is a vector of regression coefficients and u is a vector of regression

errors. We then test the null hypothesis of no residual spatial autocorrelation using Moran’s

I for regression residuals (Moran (1950); Cliff and Ord (1972)):

Moran′s I =
n

n∑
i=1

n∑
j=1

wij

n∑
i=1

n∑
j=1

wij(ûi − ¯̂u)(ûj − ¯̂u)

n∑
i=1

(ûi − ¯̂u)2
(8)

where wij is the ijth element of a spatial weight matrix W, ûi are regression residuals from

the estimation of equation (7) by OLS, and ¯̂u is equal to
n∑

i=1

ûi/n. This specification test is

conducted for the set of spatial weight matricesW defined in Section 2.5, and we defineW0 as

the subset of spatial weight matrices in W for which we reject the null hypothesis (p < 0.1).

The asymptotic distribution of the test statistic is standard normal after subtracting the

mean of the regression residuals and dividing by the standard deviation (Cliff and Ord

(1981)). If W0 is empty, we proceed with the OLS estimates.
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Second, if W0 is non-empty, we proceed to select the optimal spatial weight matrix W ∗.

This selection is based on an ex-post goodness-of-fit criteria which simulation-based evidence

has shown increases the probability of finding the true weight specification (Stakhovych and

Bijmolt (2009)). To do so, we begin by estimating a spatial Durbin specification (Anselin

(1988)) by maximum likelihood for each spatial weight matrix in W0. The spatial Durbin

specification extends the non-spatial specifications defined in equation (7) to include spatial

lags of both the dependent (Wy) and independent4 (WX) variables:

y = ρWy +Xβ +WXθ + u (9)

For each of the spatial Durbin specifications estimated, we then test the null hypothesis of no

residual spatial autocorrelation using Moran’s I for regression residuals and define W1 as the

subset of spatial weight matrices in W0 for which we do not fail to reject the null hypothesis

(p ≥ 0.10). Finally, amongst the spatial weight matrices in W1, we select the optimal spatial

weight matrix W ∗ as the spatial weight matrix whose affiliated Spatial Durbin specification

exhibits the largest pseudo-R2 value (Nagelkerke (1991)).

Third, having selected the optimal spatial weight matrix W ∗, we proceed to assess whether

the Spatial Durbin specification can be pared down to a more parsimonious specification.

To do so, we employ likelihood ratio (LR) tests to evaluate null hypotheses coinciding with

two nested alternatives. The null hypothesis θ = 0 coincides with a spatial lag specification:

y = ρWy +Xβ + u (10)

and the null hypothesis θ + ρβ = 0 coincides with a spatial error specification:

y = Xβ + u, where u = λWu+ ϵ (11)

If both null hypotheses are rejected, we conclude that the spatial Durbin specification best

describes the data. If only one of these null hypotheses is rejected, we adopt the specification

coinciding with the null hypotheses which we fail to reject. If we fail to reject both null

hypotheses, we construct robust Lagrange multiplier (LM) test statistics (Anselin et al.

(1996)) for both specifications and select the specification with the larger LM test statistic.

These test statistics test for spatial autocorrelation in regression residuals from the estimation

of equation (7) and specify the spatial lag and spatial error models as explicit alternatives:

LMlag =
( û

′Wy
û′û/n

)2

D

a∼ χ2
1 (12)

4We note that we omit spatial lags of our controls due to the absence of a theoretical basis for these effects.
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LMerror =
( û

′Wû
û′û/n

)2

T

a∼ χ2
1 (13)

where D = [ (WXβ̂)′(I−X(X′X)−1X′)(WXβ̂)
(û′û/n)

] + tr(W 2 +W ′W ) and T = tr(WW +W ′W ).

Fourth, we test for heteroskedasticity in the residuals of the preferred specification using

the Breusch-Pagan test (Breusch and Pagan (1979)). If we fail to reject the null hypothesis

(p ≥ 0.10), we proceed with our initial maximum likelihood estimates. However, if we reject

the null hypothesis (p < 0.10), we proceed to estimate the preferred specification using

the multi-step GMM/IV estimation procedure proposed by Kelejian and Prucha (2010) and

generalized by Arraiz et al. (2010). Crucially, and in contrast to the maximum likelihood

estimators that are most commonly used in this literature5, using this GMM/IV estimation

procedure allows the error term u to be heteroskedastic of an unknown form.

And fifth, if the preferred specification resulting from this estimation procedure contains

a spatial lag of the dependent variable (ρ ̸= 0), we construct the summary impact measures

proposed by Pace and LeSage (2006). These measures were devised to overcome challenges

with coefficient interpretation borne out of the expansion of the information set to include

neighbour effects. In this setting, the partial derivative of y with respect to xk is no longer

equal to the scalar β̂k, but is rather an n× n matrix with elements that are functions of the

coefficient estimates ρ, βk, and θk and the spatial weight matrix W:

∂y

∂xk

= Sk(W ) (14)

where Sk(W ) = V (W )(Iβk+Wθk) and V (W ) = (I−ρW )−1 [see Appendix B.3 for additional

information]. The average direct effect (ADE) – equal to the sum of the diagonal elements

of Sk(W ) divided by n – has a similar interpretation to βk in non-spatial specifications,

capturing the effect of a unit increase in xk,i on the outcome yi, holding outcomes in all

other counties constant. By contrast, the average indirect effect (AIE) is a measure of

spatial spillovers. It is equal to the sum of the off-diagonal elements of Sk(W ) divided by

n(n − 1) and can be interpreted as either the cumulative effect of a unit increase in xk in

observational unit i on the outcome y in all other observational units j ̸= i (termed the

Average Indirect Effect To) or as the effect of a simultaneous unit increase in xk in all other

observational units j ̸= i on the outcome y in observational unit i (termed the Average

Indirect Effect From). These interpretations are mathematically equivalent (LeSage and

Pace (2009)). Standard errors, z-statistics, and p-values are constructed for the summary

impact measures by Monte Carlo simulation.

5For example, Kaufmann et al. (2017) estimate a spatial lag specification by maximum likelihood to evaluate
the role of temperature in shaping climate opinion.
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3.1. Robustness Checks. We demonstrate the robustness of our results in two ways. First,

we assess their sensitivity to alternative spatial weight specifications. This approach arose

in the spatial econometrics literature in response to concerns regarding the sensitivity of

coefficient estimates derived from the spatial lag and spatial Durbin specifications to the

choice of the spatial weight matrix (Gibbons and Overman (2012)). Despite LeSage and Pace

(2014) largely dispelling these concerns, this approach remains commonplace in empirical

research. As a point of comparison, we therefore repeat the estimation procedure outlined in

Section 4.2 using two alternative methods for selecting the optimal spatial weight matrixW ∗.

The first method involves selecting the spatial weight matrix which most effectively controls

for residual spatial autocorrelation. This involves estimating the Spatial Durbin specification

in equation (9) for each W ∈ W0 and selecting the specification whose Moran’s I test statistic

exhibits the largest p-value. The second method involves selecting the most parsimonious

spatial weight matrix inW1 (i.e., amongst those whose affiliated Spatial Durbin specifications

fail to reject the null hypothesis of no residual spatial autocorrelation (p ≥ 0.10) based on

Moran’s I for regression residuals). In this context, the parsimony of a spatial weight matrix

W is evaluated based on its relative sparsity. If spatial weight matrices based on social and

geographic distance are equally sparse (parsimonious), we use the goodness-of-fit criteria

described in Section 3 as a tie-breaker.

And second, we demonstrate the robustness of our results to the horizon over which we

calculate the extreme weather heuristics outlined in Section 2.2. While we postulate that

county-level climate opinion is shaped in part by counties’ historical exposures to extreme

weather-related losses, the horizon over which county residents assimilate these experiences

is unclear. We therefore calculate these heuristics over three alternative horizons: 20, 30,

and 40 years. This approach is also applied by Kaufmann et al. (2017), who demonstrate

that the relationship between county-level climate opinion and their temperature heuristics

is robust across multiple time horizons.

4. Results

4.1. OLS Results and Evidence of Residual Spatial Autocorrelation. Results from

the estimation of equation (7) for the dependent variables %Belief and %Risk are reported

in Tables 3a and 3b, respectively. Taken at face value, these coefficient estimates support

the hypotheses that residents of counties that experience more severe extreme weather –

as measured by historical adverse health impacts (HealthImpact) and property damages

(AssetImpact) – are more likely to believe that climate change is happening and that it will

harm them personally in the future. This result holds in the presence of well-established in-

dustry and educational controls, as well as the temperature heuristics proposed by Kaufmann

et al. (2017). However, based on Moran’s I for regression residuals, there is strong evidence of



18 LIAM ELBOURNE

(positive) residual spatial autocorrelation in each of these specifications (p < 0.01). As noted

in Section 1, this will result in biased and inconsistent coefficient estimates. We therefore

proceed with the spatial econometric estimation procedure outlined in Section 3.

4.2. Spatial Econometric Estimation Results.

4.2.1. Model Selection. The results of the model selection procedure for the dependent vari-

ables %Belief and %Risk are presented in Tables 4a and 4b, respectively. There are five

observations of note. First, based on Moran’s I for regression residuals, the procedure was ef-

fective in eliminating evidence of residual spatial autocorrelation in all eight specifications of

interest (p ≥ 0.10). Second, the spatial Durbin model (Equation 9) was universally selected

as the preferred spatial econometric specification based on likelihood ratio tests (p < 0.10).

This indicates that spatial lags of both the dependent and independent variables are impor-

tant components of the data generating process for climate opinion at the US county level.

Third, social distance was preferred to geographic distance in the selection of an optimal

spatial weight matrix across all eight specifications of interest. This result is consistent with

social learning theory (Bandura (1977)) and experimental evidence of peer effects in the

opinion formation process (Moussäıd et al. (2013)), suggesting that social distance more ac-

curately reflects the flow and influence of information between US counties than geographic

distance in the context of this study. It also supports the assertion of Howe et al. (2019)

that empirical research into climate opinion would benefit from greater integration with psy-

chological theories. Fourth, the optimal spatial weight matrices are notably more sparse

in models of climate risk perceptions (see Table 4b) than in models of climate beliefs (see

Table 4a). While this observation is insufficient to comment on the magnitude of spatial

spillovers, it does imply that spillovers are more extensive – in terms of the number of peers

that they extend to – in the formation of climate beliefs than in the formation of climate

risk perceptions. And fifth, we obtain evidence of heteroskedasticity in the maximum like-

lihood estimation results for all eight specifications of interest based on the Breusch-Pagan

test (Breusch and Pagan (1979)). This is unsurprising in light of the significant county-level

heterogeneities discussed in Section 2. As a result, we adopt a GMM/IV estimator with het-

eroskedastic innovations (Kelejian and Prucha (2010), Arraiz et al. (2010)) to avoid potential

biases and inefficiencies associated with maximum likelihood estimation in this setting.

4.2.2. The Direct Effect of Experiential Learning. Estimates of the average direct effect of

extreme weather and temperature heuristics on climate beliefs and risk perceptions are pre-

sented in Panel A of Tables 5a and 5b, respectively. These estimates support the hypothesis

that climate opinion is shaped in part by individuals’ experiences with their local weather

and climate.
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First, we find that residents of counties that experience more severe extreme weather

are more likely to believe that climate change is happening and that it will harm them

personally in the future. On average, a unit increase in HealthImpacti (equivalent to 1

additional fatality or 10 additional injuries per year in county i that are attributable to

extreme weather) results in 0.455 and 0.653 percentage point increases in %Beliefi and

%Riski, respectively. We also obtain positive and statistically significant average direct

effect estimates for AssetImpacti, with an additional $1 million in extreme weather-related

property or crop damages per year associated with 0.003 and 0.006 percentage point increases

in %Beliefi and %Riski, respectively (see column (2) of Tables 5a and 5b). However,

these effects are dominated by those of HealthImpacti and the temperature heuristics of

Kaufmann et al. (2017) when estimated jointly (see column (4) of Tables 5a and 5b). These

findings hold in the presence of well-established industry and educational controls.

Second, these results reinforce the finding of Kaufmann et al. (2017) that local tempera-

tures influence climate opinion at the US county level. In column (3) of Table 5a, we show

that their primary results – that local warming (as proxied by TMax) increases the public’s

willingness to believe global warming is happening, but that these effects are dampened by

recent record low temperatures (Low2016) in counties that warmed (TMax > 182) over the

sample period (40 years) – hold under a more general spatial econometric estimation proce-

dure6 and on more recent data. We also show in columns (3) and (4) of Table 5a that, for

the outcome %Belief , their results hold over and above the effects of extreme weather, local

industry, and educational attainment. However, we note that their results do not extend

to the outcome %Risk7 (see columns (3) and (4) of Table 5b), thus highlighting a critical

difference between temperature- and extreme weather-based experiences and their role in

shaping climate opinion.

And third, these results suggest that exposure to extreme weather may be more influ-

ential in shaping climate opinion than local temperatures, particularly when it results in

injuries or fatalities. Based on these estimates, a one standard deviation (SD) increase in

HealthImpacti results in 0.09 SD (or 0.53 percentage point) and 0.15 SD (or 0.76 percent-

age point) increases in %Beliefi and %Riski, respectively. These impacts are two to three

times larger than those of AssetImpacti and TMaxi, with a one SD increase in the former

associated with a 0.03 SD (0.06 SD) increase in %Beliefi (%Riski) and a one SD increase

in the latter associated with a 0.04 SD increase in %Beliefi (but no statistically significant

increase in %Riski).

6Kaufmann et al. (2017) restrict their attention to a five nearest neighbour spatial weight specification based
on geographic distance and a spatial lag model specification.
7Kaufmann et al. (2017) did not study the relationship between their proposed temperature heuristics and
risk perceptions, focusing only on climate change beliefs.
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4.2.3. Spatial Spillovers in the Climate Opinion Formation Process. Estimates of the average

indirect effect of extreme weather and temperature heuristics on climate beliefs and risk

perceptions can be found in Panel B of Tables 5a and 5b, respectively. In the case of climate

beliefs, we obtain robust evidence that local weather in county i not only results in direct (i.e.,

experiential learning) effects on %Belief in county i, but also indirect effects (i.e., spatial

spillovers) on %Belief in counties j ̸= i. For example, under the Average Indirect Effect To

interpretation, unit increases in HealthImpact and AssetImpact in county i would result

in a cumulative impact on %Belief in counties j ̸= i of 4.766 and 0.066 percentage points,

respectively (see columns (1) and (2) of Table 5a). Alternatively, under the mathematically

equivalent Average Indirect Effect From interpretation, unit increases in HealthImpact and

AssetImpact in all counties j ̸= i would result in %Belief in county i increasing by 4.766 and

0.066 percentage points, respectively. We note that these effects extend to recent record low

temperatures (see column (3) of Table 5a), and that the effects of HealthImpact dominate

those of AssetImpact when estimated jointly (see column (4) of Table 5a).

By contrast, we obtain much more limited evidence of spatial spillovers in the formation

of climate risk perceptions. While estimates in column (1) of Table 5b suggest that extreme

weather-related injuries and fatalities in county i spill over into risk perceptions in coun-

ties j ̸= i, this effect becomes statistically insignificant when estimated jointly with other

experiential cues (see column (4) of Table 5b). These estimates therefore point towards an

important distinction between the processes that govern climate beliefs and risk perceptions.

While simply increasing awareness of extreme weather in other parts of the country is enough

to increase beliefs that climate change is happening, personal experience may be necessary

for an individual to become concerned for their own safety and well-being.

If elevated risk perceptions are critical to sparking adaptive planning (as is discussed for

example, in Jabeen and Johnson (2013)), this observation could have important implications

for disaster preparedness across the United States. In the absence of spatial spillovers,

elevated risk perceptions are more likely to be concentrated in regions with high historical

exposures to extreme weather. However, attribution studies are beginning to shed light on

how climate change is altering extreme weather patterns in the United States. For example,

climate change is understood to have increased the frequency and severity of some types of

extreme weather (Peterson et al. (2013), Seager et al. (2015), Wang et al. (2015), Herring

et al. (2015), Eden et al. (2016)) and decreased the frequency and severity of others (Trenary

et al. (2016), Huang et al. (2018). Herring et al. (2021)). These shifting patterns – which

imply that a county’s historical exposure to extreme weather may not always be a strong

predictor of its exposure in the future – could contribute to counties being either over- or

under-prepared for future risks, potentially misallocating resources in the process.
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4.3. Robustness. Table 6 demonstrates the robustness of our estimation results to alter-

native methods for selecting the optimal spatial weight matrix W∗. Average direct impact

estimates for HealthImpact remain positive and statistically significant when selecting W∗

in order to minimize Moran’s I (see columns (2) and (5)) or to eliminate evidence of residual

spatial autocorrelation in the most parsimonious way possible (see columns (3) and (6)).

They also further support the observation that spatial spillovers arise in the formation of cli-

mate beliefs (see columns (1)-(3)), but not risk perceptions (see columns (4)-(6)). Together,

these estimates suggestive that our results are robust in a qualitative sense. However, we

do note that these results challenge the quantitative robustness of the average indirect effect

estimates in our main results, with the alternative methods resulting in the selection of more

sparse spatial weight matrices and, in turn, average indirect effects for HealthImpact that

are of a smaller magnitude. This occurs because, as demonstrated in Appendix (B.3), the

summary impact measures proposed by Pace and LeSage (2006) are a function of the spa-

tial weight matrix W. Despite this observation, we maintain goodness-of-fit as our preferred

method for selecting the optimal spatial weight matrix as it is standard practice in the spatial

econometrics literature and supported by simulation-based evidence from Stakhovych and

Bijmolt (2009).

Our results are also robust to extreme weather impacts calculated over alternative horizons,

as illustrated by Table 7. Direct experiential learning effects associated with HealthImpact

are observed for both %Belief and %Risk over 20, 30, and 40 year horizons, with personal

experience consistently exerting a greater influence on climate risk perceptions than climate

beliefs. Consistent with our main findings, we also observe spatial spillovers in the formation

of climate beliefs across each of these horizons (see columns (1)-(3)), but not in the formation

of climate risk perceptions.
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Table 3a. OLS Results - %Belief

%Belief
(1) (2) (3) (4)

HealthImpact 0.523∗∗∗ 0.474∗∗∗

(0.077) (0.081)
AssetImpact 0.006∗∗∗ 0.001

(0.002) (0.002)
TMax 0.027∗∗∗ 0.026∗∗∗

(0.004) (0.004)
High2016 × (TMax ≤ 163) 0.037 0.036

(0.024) (0.024)
High2016 × (163 < TMax ≤ 182) -0.002 -0.003

(0.016) (0.0016)
Low2016 × (182 < TMax ≤ 201) -0.065∗∗∗ -0.061∗∗∗

(0.019) (0.018)
Low2016 × (201 < TMax) -0.058∗∗∗ -0.051∗∗∗

(0.016) (0.016)
(Intercept) 57.388∗∗∗ 57.314∗∗∗ 52.537∗∗∗ 52.869∗∗∗

(0.230) (0.230) (0.903) (0.900)

Controls Yes Yes Yes Yes
Observations 3,108 3,108 3,108 3,108
R2 0.365 0.358 0.368 0.376
Moran(W∗) 0.378∗∗∗ 0.382∗∗∗ 0.371∗∗∗ 0.361∗∗∗

Note 1: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Table 3b. OLS Results - %Risk

%Risk
(1) (2) (3) (4)

HealthImpact 0.743∗∗∗ 0.635∗∗∗

(0.073) (0.077)
AssetImpact 0.011∗∗∗ 0.005∗∗∗

(0.002) (0.002)
TMax 0.029∗∗∗ 0.026∗∗∗

(0.004) (0.004)
High2016 × (TMax ≤ 163) 0.086∗∗∗ 0.084∗∗∗

(0.023) (0.023)
High2016 × (163 < TMax ≤ 182) 0.013 0.011

(0.015) (0.015)
Low2016 × (182 < TMax ≤ 201) -0.050∗∗∗ -0.042∗∗

(0.018) (0.018)
Low2016 × (201 < TMax) -0.030∗ -0.016

(0.015) (0.015)
(Intercept) 37.306∗∗∗ 37.211∗∗∗ 31.814∗∗∗ 32.414∗∗∗

(0.219) (0.220) (0.866) (0.856)

Controls Yes Yes Yes Yes
Observations 3,108 3,108 3,108 3,108
R2 0.149 0.134 0.142 0.170
Moran(W∗) 0.548∗∗∗ 0.548∗∗∗ 0.539∗∗∗ 0.535∗∗∗

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Table 4a. Model Selection Results - %Belief

%Belief
(1) (2) (3) (4)

Panel A: Selection Criteria
Pseudo-R2 0.622 0.616 0.617 0.625
Moran’s I 0.007 0.008 0.007 0.008
LRlag 59.635∗∗∗ 56.397∗∗∗ 63.635∗∗∗ 70.117∗∗∗

LRerror 57.008∗∗∗ 47.693∗∗∗ 51.002∗∗∗ 70.791∗∗∗

Breusch-Pagan 29.369∗∗∗ 27.673∗∗∗ 34.310∗∗∗ 51.603∗∗∗

Panel B: Selection Results
Weight Specification WS,328 WS,250 WS,274 WS,449

Model Specification SDM SDM SDM SDM
Estimator GMM/IV GMM/IV GMM/IV GMM/IV

Table 4b. Model Selection Results - %Risk

%Risk
(1) (2) (3) (4)

Panel A: Selection Criteria
Pseudo-R2 0.590 0.574 0.573 0.592
Moran’s I 0.008 0.008 0.008 0.008
LRlag 13.01∗∗∗ 12.131∗∗∗ 16.882∗∗ 19.213∗∗

LRerror 59.020∗∗∗ 56.870∗∗∗ 62.712∗∗∗ 63.859∗∗∗

Breusch-Pagan 49.251∗∗∗ 55.636∗∗∗ 60.362∗∗∗ 64.524∗∗∗

Panel B: Selection Results
Weight Specification WS,28 WS,23 WS,23 WS,28

Model Specification SDM SDM SDM SDM
Estimator GMM/IV GMM/IV GMM/IV GMM/IV
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Table 5a. Summary Impacts - %Belief

%Belief
(1) (2) (3) (4)

Panel A: Average Direct Effect
HealthImpact 0.455∗∗∗ 0.466∗∗∗

(0.083) (0.096)
AssetImpact 0.003∗∗ -0.000

(0.001) (0.001)
TMax 0.009∗∗ 0.007∗

(0.004) (0.004)
High2016 × (TMax ≤ 163) 0.002 0.002

(0.021) (0.020)
High2016 × (163 < TMax ≤ 182) 0.003 0.002

(0.015) (0.014)
Low2016 × (182 < TMax ≤ 201) -0.056∗∗ -0.033∗

(0.018) (0.017)
Low2016 × (201 < TMax) -0.042∗∗ -0.038∗∗

(0.017) (0.017)

Panel B: Average Indirect Effect
HealthImpact 4.766∗∗∗ 5.962∗∗∗

(1.182) (2.269)
AssetImpact 0.066∗∗ 0.016

(0.026) (0.040)
TMax -0.005 -0.023

(0.031) (0.040)
High2016 × (TMax ≤ 163) 0.020 -0.048

(0.167) (0.179)
High2016 × (163 < TMax ≤ 182) 0.076 0.038

(0.119) (0.129)
Low2016 × (182 < TMax ≤ 201) -0.425∗∗∗ -0.386∗∗∗

(0.071) (0.084)
Low2016 × (201 < TMax) -0.079 0.261∗∗

(0.097) (0.116)

Controls Yes Yes Yes Yes
Observations 3,108 3,108 3,108 3,108
Weight Specification WS,328 WS,250 WS,274 WS,449

Model Specification SDM SDM SDM SDM
Estimator GMM/IV GMM/IV GMM/IV GMM/IV

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Note: Coefficient estimates for these specifications can be found in Table 8a
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Table 5b. Summary Impacts - %Risk

%Risk
(1) (2) (3) (4)

Panel A: Average Direct Effect
HealthImpact 0.653∗∗∗ 0.745∗∗∗

(0.109) (0.241)
AssetImpact 0.006∗∗ -0.000

(0.002) (0.004)
TMax 0.006 0.004

(0.005) (0.005)
High2016 × (TMax ≤ 163) -0.000 0.001

(0.028) (0.026)
High2016 × (163 < TMax ≤ 182) 0.013 0.009

(0.020) (0.018)
Low2016 × (182 < TMax ≤ 201) -0.021 -0.020

(0.022) (0.020)
Low2016 × (201 < TMax) -0.015 -0.009

(0.018) (0.016)

Panel B: Average Indirect Effect
HealthImpact 3.912∗∗ 28.812

(1.876) (54.113)
AssetImpact -0.011 -0.350

(0.085) (0.694)
TMax -0.159 -0.171

(0.485) (0.398)
High2016 × (TMax ≤ 163) -1.166 -1.191

(2.892) (2.360)
High2016 × (163 < TMax ≤ 182) 1.181 0.737

(3.193) (2.057)
Low2016 × (182 < TMax ≤ 201) -0.244 -0.266

(1.474) (1.191)
Low2016 × (201 < TMax) 0.896 1.242

(2.346) (1.242)

Controls Yes Yes Yes Yes
Observations 3,108 3,108 3,108 3,108
Weight Specification WS,28 WS,23 WS,23 WS,28

Model Specification SDM SDM SDM SDM
Estimator GMM/IV GMM/IV GMM/IV GMM/IV

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Note: Coefficient estimates for these specifications can be found in Table 8b
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5. Discussion

Climate change is an urgent global challenge that requires coordinated action from indi-

viduals, firms, and governments to mitigate future damages. However, substantial variability

in climate opinion across US counties threatens to hinder these efforts (Howe et al. (2015)),

with widespread climate skepticism and low levels of concern unlikely to contribute to the

broad public support needed to catalyze effective climate action (Snow et al. (2008)). This

has sparked significant academic interest in the factors that influence climate opinion. Previ-

ous studies have yielded strong evidence in support of education (Angrist et al. (2024)), local

fossil fuel activity (Dewitte (2023)), gender (Egan and Mullin (2012)), partisanship (Dunlap

and McCright (2008), and temperature-based experiential cues (Kaufmann et al. (2017)).

By contrast, the role of extreme weather – a vivid and emotionally salient heuristic closely

tied to climate change – remains a topic of debate. Despite its strong psychological basis,

the literature is in disagreement as to whether extreme weather produces an experiential

learning effect on climate beliefs and risk perceptions (Hughes et al. (2020), Konisky et al.

(2016), Sloggy et al. (2021), Brulle et al. (2012), Carmichael and Brulle (2017), Lyons et al.

(2018)). However, in an extensive review of the literature, Howe et al. (2019) point out that

this disagreement may be due to these studies’ failure to account for spatial dependence

in the climate opinion formation process – an omission that could lead to biased statistical

inference (Anselin and Bera (1998)).

This paper helps settle this long-standing debate while also revealing important nuances

in the climate opinion formation process that were not addressed by previous studies. We

leverage tools from the spatial econometrics literature (LeSage and Pace (2009) to evaluate

the relationship between extreme weather and climate opinion at the US county level while

accounting for spatial spillovers between socially connected counties. Our results reveal four

key insights. First, they demonstrate that residents of counties experiencing more severe

extreme weather are more likely to believe that climate change is happening. We refer to

this as the direct experiential learning effect of extreme weather on climate belief. Second,

by also incorporating the temperature heuristics proposed by Kaufmann et al. (2017) in our

econometric specifications, our results indicate that extreme weather events produce direct

experiential learning effects on climate beliefs that are two to three times larger in magnitude

than those of longer-term changes in temperature. Third, extreme weather distinguishes

itself from temperature-based experiential cues in our results by also producing a direct

experiential learning effect on climate risk perceptions. And fourth, our results demonstrate

that spatial spillovers arise in the formation of climate beliefs, but not risk perceptions.

These insights strengthen our understanding of the mechanisms driving climate opinion

and have practical implications for climate communications and disaster preparedness. While

increasing public awareness of extreme weather in other regions can enhance climate beliefs,
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elevating risk perceptions requires direct, local experience with extreme weather. This dis-

tinction is particularly relevant as climate change continues to alter the spatial distribution of

extreme weather, placing previously low-risk communities at greater future risk. Addressing

this challenge will require innovative approaches to climate communications and disaster risk

management that anticipate emergent high-risk areas and foster proactive public responses.

5.1. Gaps & Future Work. While a large, interdisciplinary body of research on climate

opinion has taken shape over the past two decades, numerous gaps remain which would

advance this research agenda. First, the literature remains highly US-centric. Data on public

perceptions of climate change are more widely available in the United States than any other

country, and extensive climate records allow for a wide variety of experiential drivers to be

explored at various spatial and temporal scales. However, we echo the calls of previous studies

for research in more diverse geographic contexts (Capstick et al. (2015), Borick and Rabe

(2017), Howe et al. (2019)). By filling this gap, future research could further validate the

findings from US-based studies, while also shedding light on how culture, politics, and other

contextual factors shape the climate opinion formation process. Moreover, these studies are

increasingly possible as climate opinion polling improves in other countries. For example,

spatially-resolved climate opinion estimates are now also available in Canada (Mildenberger

et al. (2016)), India (Marlon et al. (2019)), and Ireland (Leiserowitz et al. (2021)).

Second, many important nuances of the climate opinion formation process have yet to

be evaluated quantitatively. This paper makes some headway in this regard, identifying

important distinctions between extreme weather- and temperature-based experiential cues

and their roles in shaping two distinct opinion-based outcomes (beliefs and risk perceptions).

However, the literature has almost exclusively focused on population-level effects. In doing

so, it has ignored heterogeneities that would be highly relevant to policymakers and climate

communicators alike. For example, existing research has highlighted the gulf in climate opin-

ion across political groups (Dunlap and McCright (2008), McCright and Dunlap (2011b),

McCright and Dunlap (2011a), Guber (2013)), but has offered relatively little quantitative

evidence regarding its causes. Within-group dynamics may partially explain why this gap

has widened over time (for example, in line with Moussäıd et al. (2013) and Sunstein et al.

(2018)), but spatially-resolved climate opinion estimates by political group within the United

States (Mildenberger et al. (2017)) allow new hypotheses to be tested. Meanwhile, existing

disaster risk indices such as FEMA’s National Risk Index for Natural Hazards (Zuzak et al.

(2022)) acknowledge that socially vulnerable communities disproportionately shoulder the

effects of natural disasters. However, existing research has yet to explore whether extreme

weather differentially affects climate opinion in more socially-vulnerable communities. Stud-

ies that quantify heterogeneous effects such as these could play an important role in shaping

climate policy and communications efforts in the future.
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And third, the climate opinion formation literature would be complemented by quan-

titative research which establishes a relationship between climate opinion and economic,

political, or social outcomes. The relatively limited research in this area has tended to fo-

cus on behavioural intentions, such the relationship between environmental awareness and

EV purchase intentions (Mustafa et al. (2022)). The importance of studying realized be-

havioural outcomes, however, is reinforced by evidence of an intention-behaviour gap (Glanz

et al. (2015)). For example, He et al. (2023) find evidence of such a gap in households’

adoption of energy-saving appliances. A study by Hazlett and Mildenberger (2019) – which

links Californian communities’ wildfire exposure to support for climate policy – has helped

address this gap in the literature, but further contributions would be a welcome addition to

the literature and strengthen its external validity.
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Appendix A. Extended Literature Review

Over the past century, research in social psychology has significantly advanced our under-

standing of how attitudes, beliefs, and judgements are formed. Psychological theories offer

valuable frameworks for interpreting the processes through which individuals form opinions

about complex and contested topics, such as climate change. As Howe et al. (2019) argue,

these theories provide a powerful lens through which researchers can approach the growing

body of empirical work on climate opinion. By grounding empirical strategies in established

psychological frameworks and interpreting results through the lenses of these theories, re-

searchers can gain a more nuanced understanding of the mechanisms that shape climate

beliefs and identify new directions for inquiry.

In this section, we aim to bridge the theoretical and empirical domains to establish a firm

foundation for this paper. In Section A.1, we introduce a variety of psychological theories and

discuss their implications for how individuals process information and form judgements, with

a particular focus on dual process theories and the heuristic-systematic model. In Section

A.2, we review the empirical literature on the drivers of climate opinion through the lenses

of these theories, contextualizing key findings within their theoretical frameworks. Together,

these sections demonstrate the dynamic interplay between cognitive processes, motivational

factors, and informational cues in shaping climate beliefs.

A.1. Theory: The Psychology of Opinion Formation.

A.1.1. Dual Process Theories and the Heuristic-Systematic Model. Dual process theories

provide a foundational framework for understanding how individuals process information,

arguing that they rely on two distinct modes of information processing (Kahneman (2013)).

Type 1 processing relies on easily noticed and understood informational cues, such as social

norms, authority endorsements, or emotionally salient events. This mode of information

processing is cognitively efficient but less thorough, often relying on mental shortcuts. In

contrast, type 2 processing involves a deeper, more analytical evaluation of information.

Individuals scrutinize the quality, consistency, and relevance of available evidence, often

leading to more robust and accurate conclusions, albeit at a greater cognitive and temporal

cost. In the heuristic-systematic model (HSM) (Chaiken (1980), Chaiken and Stangor (1987),

Chaiken and Ledgerwood (2012)) – a dual process theory specific to the formation of attitudes

and judgements – these are referred to as heuristic and systematic modes of information

processing.

By layering a number of features on top of the standard dual process framework, the HSM

provides a rich and nuanced lens through which researchers can examine how individuals

engage with information. These features make the HSM particularly well-suited for exploring

opinion formation in contexts involving complex and contested topics, such as climate change.
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These features include the central role of motivation, the divergence between heuristic and

systematic signals, the principle of effort minimization, and the constraints imposed by

individuals’ informational, temporal, and cognitive environments.

First, the HSM asserts that individuals engage in information processing in order to arrive

at attitudinal judgements which satisfy their motivational objectives. In doing so, it places

the nature and strength of one’s motivation at the heart of its model of attitude formation.

These objectives may be based on a desire to either (i) achieve a desired level of judgemen-

tal confidence (termed accuracy motivation) or (ii) arrive at a judgement that aligns with

self-focused variables such as one’s priors (termed defensive motivation) or other-focused

variables such as the judgements of an influential individual or group (termed impression

motivation). Because the latter two of these motivations are associated with selective infor-

mation processing and confirmation bias (Hart et al. (2009)), the nature of one’s motivation

can lead to differential judgements in and of itself.

Second, in line with other dual process theories, the HSM acknowledges that heuristic

and systematic processing may provide different signals regarding a topic of interest. This

divergence arises in part due to the susceptibility of heuristic-based reasoning to a wide

range of behavioural biases, including anchoring, availability, and representativeness biases

(Tversky and Kahneman (1974)). Meanwhile, the more comprehensive, analytical evaluation

of evidence that takes place during systematic processing reduces the likelihood of biased

conclusions (although Chaiken and Ledgerwood (2012) note that it does not eliminate them

entirely). Different modes of information processing can therefore lead to different – and at

times coflicting – conclusions being drawn, even from the same underlying information set.

Third, the principle of effort minimization underscores the dynamic interplay between

cognitive effort and motivational goals within the HSM, with individuals striving to achieve

their motivational objectives with the least cognitive effort. Heuristic processing, being less

demanding, can therefore be understood as the default mode of information processing,

with individuals only engaging in systematic processing when heuristic cues are insufficient

to satisfy their motivational objectives. This could occur when an individual’s accuracy

motivation is strong or when heuristic signals are ambiguous or contradictory. In light

of evidence that climate change is secondary to other daily concerns (Marx et al. (2007),

Weber and Stern (2011)), heuristic processing may therefore be particularly prevalent in the

formation of climate opinion.

And fourth, individuals’ capacity to engage in systematic processing is constrained by

both internal factors, such as their inherent cognitive ability, and external factors, such as

the composition of their information set and the amount of time they can devote to the

judgement. For instance, individuals with limited access to reliable information or facing

significant time pressures may rely on heuristic processing, even when systematic processing
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would otherwise be preferable. These constraints emphasize the importance of context in

shaping how individuals process information and form attitudes.

A.1.2. Complementary Psychological Theories and the Sources of Informational Cues. While

the heuristic-systematic model is relatively comprehensive, it remains agnostic about the

nature of evidence in an individual’s information set. Alternative theories of learning take

a narrower approach with respect to sources of these informational cues, with two theories

highlighting the importance of experiential and social cues in the opinion formation process.

Experiential learning theory (Kolb (1984)) posits that learning is a dynamic, cyclical

process where individuals relate concrete experiences and observations to abstract conceptu-

alizations. This process enables individuals to test their existing beliefs while simultaneously

forming new ones, with experiential cues serving as vivid and emotionally salient anchors for

learning. In the context of climate opinion formation, extreme weather events represent par-

ticularly vivid experiential cues. These events are emotionally impactful and easily retrieved

from memory, making them powerful drivers of belief formation. Kolb further emphasizes

the centrality of individuals’ interactions – both physical and cognitive – with their environ-

ment, suggesting that people’s experiences with their local climate are unavoidable and thus

a feasible mechanism for shaping climate beliefs. Given the link between personal experi-

ence and belief implied by this theory, the salience of extreme weather provides a compelling

rationale for evaluating the role of extreme weather in shaping climate opinion.

By contrast, social learning theory (Bandura (1977)) assigns a central role to observations

of others in the learning process, emphasizing that individuals form and revise beliefs not only

through personal experience but also by observing the experiences and attitudes of others. In

the context of climate opinion formation, this implies that beliefs about climate change are

shaped not just by an individual’s direct interactions with local climatic conditions, but also

by the beliefs and experiences of others within their social network. Social learning therefore

reinforces the potential for spatial dependence in climate opinion, as individuals are often

influenced by those geographically or socially proximate to them. Experimental evidence by

Moussäıd et al. (2013) supports this notion, finding that individuals revise their judgements

after exposure to others’ opinions and confidence levels. This interaction can create two

distinct attractors of opinion: the expert effect, where individuals gravitate toward the

views of perceived experts, and the majority effect, where they conform to dominant group

norms. These dynamics highlight the importance of social spillovers in shaping climate

beliefs, particularly in spatially interconnected settings. We discuss the implications of these

social dynamics for statistical inference and our empirical strategy in Section 3.

Together, these theories suggest that experiential and social cues are critical to under-

standing how individuals form and update their attitudes toward climate change. While the

HSM provides a robust framework for analyzing the cognitive and motivational dimensions
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of opinion formation, the theories of Kolb (1984) and Bandura (1977) complement it by

highlighting the role of external, context-specific informational cues that may amplify or

mediate the processes described by the HSM.

A.2. Empirical Evidence on the Drivers of Climate Opinion.

A.2.1. The Role of Experiential Learning. According to Kolb’s experiential learning theory

(Kolb (1984)), concrete experiences are an important mechanism by which individuals form

their attitudes and beliefs. Weather – a tangible, daily phenomenon that everybody is ex-

posed to – therefore provides direct signals that can inform individuals’ beliefs and risk

perceptions regarding climate change. These weather-based experiences are also natural

candidates for heuristic-based processing. Extreme weather events and temperature anom-

alies are vivid, emotionally salient, and conceptually aligned with climate change, making

them easily retrieved from memory and particularly influential in shaping climate opinion.

Moreover, because climate change often takes a backseat to more immediate daily concerns

and engaging with complex scientific evidence is cognitively challenging (Marx et al. (2007),

Weber and Stern (2011)), these experiential, heuristic-based cues may play an outsized role

in shaping climate opinion. By offering accessible and relatable signals, weather-based ex-

periences enable individuals to form judgements about climate risks without the need for

extensive analytical engagement.

Temperature, perhaps reflective of its conceptual alignment with the notion of a warming

planet, has received considerable attention in the literature on climate opinion. A statistically

significant relationship between short-term temperature anomalies and enhanced climate

change beliefs and concerns has been observed repeatedly across studies, including Joireman

et al. (2010) Li et al. (2011), Hamilton and Stampone (2013), Brooks et al. (2014), Zaval

et al. (2014), Bohr (2017), and Lee et al. (2018). For example, Brooks et al. (2014) find

that quadratic deviations from the long-term mean temperature occurring on the date of

the survey are associated with elevated risk perceptions. Studies of longer-term temperature

trends have been less conclusive, with a large number of studies both supporting (Shao et al.

(2014), Shao et al. (2016), Shao (2017), Deryugina (2013), Donner and McDaniels (2013),

Borick and Rabe (2014), Zahran et al. (2006), Hamilton and Keim (2009)) and refuting

(Brulle et al. (2012), Carmichael and Brulle (2017), Marlon et al. (2019), Shum (2012),

Brody et al. (2008)) effects based on longitudinal changes in temperature. Perhaps the

strongest example in this literature, however, comes from Kaufmann et al. (2017). They

introduce a novel measure of local changes in climate based on the relative timing of record

high and low temperatures over multiple decades, and supplement it with measures of short-

term warm and cold temperature anomalies8. Their results suggest that long-term warming

8Additional information on the temperature heuristics constructed by Kaufmann et al. (2017) can be found
in Section 2.3.
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increases beliefs in climate change at the US county level, but that this effect is dampened

by recent cold anomalies which reduce beliefs. Another strength of their contribution lies in

their empirical strategy. Recognizing the potential for spatial dependence in this setting and

the empirical challenges it would introduce (Anselin and Bera (1998), Anselin (2022)), they

adopt techniques from the spatial econometrics literature to mitigate the risk of statistical

bias. Crucially, this risk may help explain the conflicting conclusions of earlier studies.

Compared to temperature-based cues, the relationship between extreme weather and cli-

mate opinion has received relatively less attention in the literature, and the results are far

from conclusive. While several studies have found evidence that extreme weather influences

climate opinion, the observed effects tend to be small (Konisky et al. (2016), Hughes et al.

(2020), Sloggy et al. (2021). For example, Hughes et al. (2020) find some evidence that

drought and precipitation anomalies are associated with enhanced climate change beliefs

and risk perceptions in Australia, but note that the results do not extend to temperature

anomalies. Conversely, other studies have failed to identify a statistically significant rela-

tionship, including Brulle et al. (2012), Cutler (2016), Carmichael and Brulle (2017), and

Lyons et al. (2018). Meanwhile, there is also some disagreement in the literature regarding

the persistence of these effects. In one of the few studies that exploits longitudinal data,

Konisky et al. (2016) find evidence that exposure to extreme weather increases American

residents’ concern about climate change, but only for recent events. In contrast, Sloggy

et al. (2021) find that both recent and past hurricanes are associated with enhanced beliefs

in climate change, suggesting that some effects may endure over time.

The small effect sizes and general disagreement in the literature is somewhat surprising

in light of the theoretical framework established earlier. Extreme weather events are con-

ceptually salient to climate change, as they are widely associated with the consequences of

a warming planet. Moreover, extreme weather can result in significant disruptions to indi-

viduals’ livelihoods, with some effects – such as property damage, adverse health outcomes,

or loss of income – having long-term consequences. Even when these impacts are short-

lived, the vivid and emotionally salient nature of extreme weather events makes them easily

retrieved from memory, enhancing their capacity to shape climate opinion through heuristic-

based processing. Given these factors, one might expect extreme weather to exert a stronger

and more persistent influence on climate beliefs than the literature currently suggests.

This study addresses these gaps by incorporating spatial econometric techniques that ex-

plicitly account for spatial dependence. This approach – which reduces the risk of statistical

biases and allows us to capture the full range of extreme weather’s effects, including both

direct impacts on affected counties and indirect impacts on other geographically or socially

proximate counties – has been advocated for by Howe et al. (2019) in a comprehensive review

of the literature, but has not been incorporated into more recent studies of extreme weather
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and climate opinion. By responding to the call to action of Howe et al. (2019), this paper

aims to mirror the contributions of Kaufmann et al. (2017) in this adjacent literature.

A.2.2. The Role of Education. Educational attainment plays a crucial role in the opinion

formation process, operating through two distinct channels. First, education can be viewed

as an accumulation of human capital that increases an individual’s ability to engage in

systematic processing. Because heuristic and systematic modes of information processing

can lead to different conclusions from the same information set, this lessening of cognitive

constraints may independently influence judgements. This mechanism is particularly rel-

evant in the domain of climate change, with Weber and Stern (2011) demonstrating that

a large portion of the general population have difficulty understanding scientific evidence

about climate change. Alternatively, educational attainment can be viewed as expanding

an individual’s information set. In the context of this study, education may influence an

individual’s opinions about climate change by exposing them to a broader array of scientific

and environmental knowledge, which could shift their beliefs and risk perceptions.

Empirically, a robust relationship has been established between educational attainment

and climate opinion. By exploiting new compulsory school laws in 16 European countries,

Angrist et al. (2024) were able to estimate the causal effects of educational attainment on a

variety of pro-environmental outcomes, including beliefs in climate change. Their instrumen-

tal variables estimates suggest that an additional year of education results in a 4.0 percentage

point increase in an individual’s probability of holding pro-environmental beliefs. Hamilton

et al. (2015) complement this work by finding that education dominates other socioeconomic

factors in predicting climate opinion, but also that the effects are moderated by political ori-

entation. In light of this strong and robust relationship, educational attainment has been

exploited as an individual-level predictor in the construction of spatially resolved climate

opinion estimates in the United States (Howe et al. (2015)), Canada (Mildenberger et al.

(2016)), and Ireland (Leiserowitz et al. (2021)).

A.2.3. The Role of Local Industry. The multi-motive interpretation of the HSM provides

an intuitive framework for understanding how local industry influences climate opinion,

operating through a sequential process involving both defensive and impression motivations.

First, defensive motivation seeds skepticism about climate change among individuals whose

personal or economic interests are directly threatened by it. In fossil fuel-dependent com-

munities, individuals working in the industry may perceive that acknowledging the need for

a transition to renewable energy endangers their livelihoods, careers, and local economies.

This perceived threat can lead individuals to process information in a way that defends their

pre-existing attitudes, either by scrutinizing evidence selectively or by relying on heuris-

tic cues that justify climate skepticism, such as dismissive narratives about human-caused

climate change.
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Second, impression motivation facilitates the diffusion of these doubts throughout commu-

nities. Living in a fossil fuel-dependent community exposes individuals to influential leaders,

peers, and organizations that may actively espouse climate-skeptical attitudes as part of a

defensive strategy. These influential figures shape local norms, creating a social environment

where aligning with skeptical attitudes becomes a way to gain acceptance or maintain co-

hesion within the group. Impression motivation drives individuals to adopt these attitudes,

not necessarily because they align with their personal beliefs, but because they seek to align

with the expectations of their peers, employers, or community leaders. As such, defensive

motivations seed doubt, while impression motivations help those doubts spread, reinforcing

a climate-skeptical culture.

Empirically, Dewitte (2023) makes a compelling case that climate skepticism in the United

States can be explained by communities’ historical exposure to extractive industries. To do

so, this study first develops a novel dataset of 3.6 million oil and gas wells drilled between

1859 and 2022 and uses it to measure a county’s historical exposure to fossil fuel extraction

as the number of decades during which at least one oil and gas producing well was drilled.

Dewitte then estimates the relationship between this measure and climate opinion, finding

that an additional decade of exposure in an individual’s county of residence decreases the

probability that they believe in climate change by 0.15-0.20 percentage points. Dewitte

further supports this finding by demonstrating that historical exposure is associated with

the development of local “oil identities.” Dewitte does so by identifying a causal link between

historical industry activity and the naming of local sports teams (such as the “Oilers”).

Local industry characteristics have also been incorporated as individual-level predictors in

the construction of spatially resolved climate opinion estimates in the United States (Howe

et al. (2015)) and Canada (Mildenberger et al. (2016)), further reinforcing their role in

shaping climate beliefs and risk perceptions.

A.2.4. The Role of Gender. Gender differences in climate opinion have been established

across a large number studies, consistently showing that women exhibit higher levels of cli-

mate belief and concern than men do (O’Connor et al. (1999), Brody et al. (2008), McCright

(2010), McCright and Dunlap (2011b), Egan and Mullin (2012)). For example, McCright

(2010) finds that women are more likely to worry about global warming than men (35% to

29%), to believe that it will threaten their way of life (37% to 28%), and to believe that

it is underestimated by the media (35% to 28%). These observations are most commonly

attributed to gender difference in risk preferences. Women are consistently found to be more

risk averse than men (Slovic (1999), Sarin and Wieland (2016)) and may therefore perceive

climate change as a greater threat. Within the HSM, this heightened perception of risk could

strengthen their accuracy motivation, increasing their propensity to process climate-related

information in a systematic manner and, ultimately, guide adaptive planning. By contrast,
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lower levels of risk aversion in men may weaken their accuracy motivation, leading them to

rely on heuristic processing which is more susceptible to errors in judgement and behavioural

biases (Tversky and Kahneman (1974)).

Although is it often overlooked in the literature, gender differences in confidence can also

help explain these empirical results. Despite evidence that women possess more accurate

climate-related knowledge than men, women are more likely to underestimate their knowl-

edge than men are (McCright (2010)). This underestimation heightens perceptions amongst

women that heuristic cues are insufficient to achieve their desired level of accuracy, thus

increasing their propensity to engage in systematic processing. By contrast, men, exhibit-

ing overconfidence in their knowledge, may rely more heavily on heuristic-based cues, even

when such cues may lack sufficient informational depth. This divergence in confidence levels

can therefore result in systematic differences in the propensity to scrutinize climate-related

information between men and women, ultimately leading to a divergence in climate opinion

between the two groups.

A.2.5. The Role of Political Affiliation and Ideology. Across a wide range of studies, the po-

litical party one supports has been identified as a strong predictor of climate opinion (Dunlap

and McCright (2008), McCright and Dunlap (2011a), McCright and Dunlap (2011b), Guber

(2013), Mildenberger et al. (2017)). Similar to local fossil fuel industry exposure, political af-

filiation’s role in shaping public perceptions of climate change can be understood through the

interaction of defensive and impression motivations. Political leaders represent an influential

reference point which party supporters may be motivated to align with. Once a certain atti-

tudinal view takes hold within a political group, impression motivations are strengthened by

the additional draw of aligning with the majority of one’s peers. And for those who have up-

dated their judgements in align with their party stance, their stance can become entrenched

by a propensity to defend your priors (defensive motivation). However, while an association

between partisanship and climate opinion has been established across a myriad of studies,

uncertainty remains regarding the predominant direction of causality in this relationship.

While partisanship may vary well shape one’s opinions about climate change, the party one

supports may very well also be shaped by one’s perceptions of important policy issues.

A.2.6. The Role of Spatial Spillovers. Spatial spillovers can arise in the climate opinion

formation process for a variety of reasons. First and foremost, both psychological theories

(Bandura (1977)) and experimental evidence (Moussäıd et al. (2013)) support the notion that

individuals are social learners, forming their judgements in part based on their exposure to

the opinions and perspectives of others. Second, individuals are increasingly exposed to

out-of-county informational cues due to the simultaneous decline in local news outlets and

rise of media conglomerates and digital platforms (Ardia et al. (2020)). And third, due to

the significant amount of inter-county migration in the United States (Ambinakudige and
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Parisi (2017)), many county residents’ exposure to experiential cues – such as local changes in

temperature or extreme weather – will have been shaped by experiences in multiple locations.

Unfortunately, the literature on climate opinion formation has largely ignored these effects.

This is a critical shortcoming not only because of the richness that identifying and quantifying

spatial spillovers brings to the topic, but also because of the challenges it introduces for

statistical inference. This latter point is emphasize by Howe et al. (2019), who suggest that

disagreements in the literature regarding the influence of experiential, weather-based cues

in this setting may be partially attributable to spatial autocorrelation in the error term and

bias that this may introduce to coefficient estimates (Anselin and Bera (1998)). Kaufmann

et al. (2017) break this mold, accounting for spatial spillovers in their study of how local

changes in temperature influence climate opinion through the inclusion of a spatially lagged

dependent variable. In a similar vein, one of the primary contributions of this paper is to

estimate spatial spillovers in the climate opinion formation process related to a phenomenon

with extensive news coverage: extreme weather.

A.2.7. The Role of Asymmetric Behavioural Biases. Viewed differently, Sunstein et al. (2018)

argue that polarization in climate change perceptions can arise in response to asymmetries

in how climate believers and skeptics update their judgements in response to new infor-

mation. In an experimental setting, participants with skeptical priors were observed to

become more skeptical in response to unexpected positive informational cues (for example,

that temperatures are expected to rise less than previously anticipated) and not update their

position at all in response to unexpected negative informational cues (for example, that tem-

peratures are expected to rise more than previously anticipated). Participants with more

pro-environmental priors exhibited the exact opposite response, believing more strongly in

climate change in response to unexpected negative news and not updating their beliefs at

all in response to unexpected positive news. This view is further supported by Howe and

Leiserowitz (2013), who explore whether individuals’ perceptions of how their local climate

has changed are primed by their prior beliefs regarding whether climate change is happen-

ing. They find evidence that those who are skeptical of climate change are more likely to

underestimate the amount by which their local climate has warmed.

Within the HSM, these observations can be understood through the lens of defensive

motivation. Individuals are at times motivated to defend their prior beliefs and, in doing

so, exhibit a higher propensity to engage in selective information processing. For example,

Hart et al. (2009) find that individuals are nearly two times more likely to select information

which supports their priors than information which refutes it when called to update their

judgements. This evidence emphasizes the importance of studying public perceptions in

dynamic contexts, although researchers have largely been constrained in this regard due to

a lack of longitudinal datasets on climate opinion.
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Appendix B. Supplementary Technical Information

B.1. Estimating Climate Opinion: Yale Program for Climate Communications

Methodology (Howe et al., 2015). In their US Climate Opinion Maps, Howe et al.

(2015) provide the first and only spatially resolved estimates of climate change beliefs, risk

perceptions, and policy preferences in the United States. These estimates are made pos-

sible through advances in a survey down-scaling technique known as multi-level regression

and post-stratification (MRP). At the foundation of this approach are several waves of a

probability-based, regionally stratified, and nationally representative survey (n > 28, 000).

During the multi-level regression step, these survey responses are used to estimate the fol-

lowing linear probability model, relating stated beliefs to individual- and geography-level

covariates in the survey sample:

Opinionjc = αc +

q∑
k=1

βkRkj + ηjc (15)

where Opinionjc is the coded response to either of the questions posed above for respondent j

in county c, Rjk is an individual-level regressor for respondent j, βk is the regression coefficient

on Rjk, ηj is an error term, and αc captures both observed and unobserved county-level

variation. Then in the post-stratification step, county-level climate opinion estimates are

produced by relating these coefficient estimates to known features of the US population. To

do so, the authors first segment the US population into strata s defined by permutations

of realized values of these individual- and county-level regressors in the full US population.

They then calculate fitted values for each strata (denoted Ôpinions) based on equation (15),

and estimate climate opinion in county c (denoted %Opinionc) as the population-weighted

average of the strata estimates Ôpinions within county c:

%Opinionc =

∑
s∈cNs

̂Opinions∑
s∈cNs

(16)

where Ns is a count of the adult population in strata s. This approach has been thoroughly

validated by public opinion scholars (Park et al. (2006), Lax and Phillips (2009), Warshaw

and Rodden (2012), Buttice and Highton (2013)).

B.2. Assignment of Temperature Heuristic Observations from Weather Stations

to US Counties. As noted in Section 2.3, the heuristics for local changes in temperature

reconstructed from Kaufmann et al. (2017) are first constructed for 4,924 weather stations

located in the United States. Station-level heuristic values are then assigned to US counties

within QGIS, a geographic information system software, by the following method. First,

we construct Thiessen polygons using the point coordinates of weather stations as an input.

Thiessen polygons are used to allocate planar space to points in space by defining an area
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around a point where every coordinate is nearer to this point than any other. This step is

depicted in Figure 5, with the weather stations depicted by yellow points and the Thiessen

polygons by white lines. Next, we perform a spatial join between the Thiessen polygons

and the county boundaries (depicted by the black lines) to form a larger sample of smaller

polygons. We will call these ‘joined polygons’. Each joined polygon is associated with

exactly one county and one station-level index value. Finally, a county-level heuristic value

Heuristicc is calculated for each county by taking the landmass-weighted average of the

joined polygons within it:

Heuristicc =

∑
j∈s

Landmassj × TMaxj

Landmassc
(17)

whereHeuristicc is one of TMaxc, High2016c, or Low2016c, Landmassj is the area of joined

polygon j, Landmassc is the landmass of county c, TMaxj is the index value associated with

joined polygon j, and the summation is over joined polygons j within county c.

B.3. Coefficient Interpretation in Spatial Econometrics. In Section 3, we note that

coefficient interpretation in specifications that contain a spatially lagged dependent variable

(ρ ̸= 0) is complicated by the expansion of the information set to include neighbour effects.

As a result of these effects, the partial derivative of y with respect to xk in this setting is

Figure 5. Weather stations, their associated Thiessen polygons, and their inter-
section with US counties.



EXTREME WEATHER AND CLIMATE OPINION 43

no longer equal to the scalar β̂k. Instead, it is an n × n matrix that is a function of the

coefficient estimates ρ̂, β̂k, θ̂k, and the spatial weight matrix W . To see why, consider the

Spatial Durbin specification:

y = ρWy +Xβ +WXθ + u (18)

By the spatially lagged dependent variable to the left hand side, equation (18) can be rewrit-

ten as follows:

(I − ρW )y = Xβ +WXθ + u (19)

Isolating y on the left hand side then yields the following expression:

y =
k∑

r=1

Sr(W )xr + V (W )u (20)

where Sk(W ) = V (W )(Iβk + Wθk) and V (W ) = (I − ρW )−1. It is then clear from this

expression that the partial derivative of y with respect to xk is equal to the more complicated

expression Sk(W ).

B.4. Supplementary Results. As noted in Section 3, interpreting estimates in specifica-

tions with spatially lagged dependent variables are more complex, with coefficient estimates

not coinciding with the partial derivative of y with respect to the independent variables X.

To address this, we report the summary impact measures proposed by Pace and LeSage

(2006) in Section 4. For completeness, we have included the coefficient estimates as supple-

mentary tables.
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Table 8a. Coefficient Estimates for Spatial Econometric Specifications - %Belief

%Belief
(1) (2) (3) (4)

Intercept 20.999∗∗∗ 19.756∗∗∗ 14.876∗∗∗ 14.418∗∗∗

(2.297) (2.209) (2.412) (2.448)
HealthImpact 0.359∗∗∗ 0.358∗∗∗

(0.039) (0.097)
AssetImpact 0.002 -0.001

(0.002) (0.001)
TMax 0.009∗∗ 0.008∗

(0.004) (0.004)
High2016 × (TMax ≤ 163) 0.001 0.003

(0.021) (0.021)
High2016 × (163 < TMax ≤ 182) 0.001 0.001

(0.015) (0.014)
Low2016 × (182 < TMax ≤ 201) -0.027 -0.027

(0.017) (0.017)
Low2016 × (201 < TMax) -0.044∗∗ -0.042∗∗

(0.017) (0.017)
lag.%Belief (ρ) 0.594∗∗∗ 0.615∗∗∗ 0.694∗∗∗ 0.715∗∗∗

(0.038) (0.036) (0.034) (0.035)
lag.HealthImpact 1.762∗∗∗ 1.472∗∗

(0.510) (0.594)
lag.AssetImpact 0.025∗∗ 0.005

(0.011) (0.012)
lag.TMax -0.008 -0.012

(0.011) (0.011)
lag.(High2016 × (TMax ≤ 163)) 0.006 -0.016

(0.055) (0.056)
lag.(High2016 × (163 < TMax ≤ 182)) 0.023 0.011

(0.038) (0.039)
lag.(Low2016 × (182 < TMax ≤ 201)) -0.115∗∗ -0.093∗∗

(0.045) (0.046)
lag.(Low2016 × (201 < TMax)) 0.070∗∗ 0.106∗∗∗

(0.034) (0.035)

Controls Yes Yes Yes Yes
Observations 3,108 3,108 3,108 3,108
Weight Specification WS,328 WS,250 WS,274 WS,449

Model Specification SDM SDM SDM SDM
Estimator GMM/IV GMM/IV GMM/IV GMM/IV

Note 1: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Note 2: Summary impact measures (Pace and LeSage (2006)) are reported in Table 5a.
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Table 8b. Coefficient Estimates for Spatial Econometric Specifications - %Risk

%Risk
(1) (2) (3) (4)

Intercept 4.886 1.046 -0.519 -0.202
(3.014) (2.575) (1.844) (1.841)

HealthImpact 0.527∗∗∗ 0.495∗∗∗

(0.097) (0.096)
AssetImpact 0.006∗∗∗ 0.002

(0.002) (0.001)
TMax 0.007∗∗ 0.005∗

(0.004) (0.004)
High2016 × (TMax ≤ 163) 0.010 0.012

(0.018) (0.018)
High2016 × (163 < TMax ≤ 182) 0.003 0.003

(0.012) (0.012)
Low2016 × (182 < TMax ≤ 201) -0.019 -0.017

(0.014) (0.013)
Low2016 × (201 < TMax) -0.023 -0.020

(0.013) (0.013)
lag.%Belief (ρ) 0.839∗∗∗ 0.938∗∗∗ 0.986∗∗∗ 0.984∗∗∗

(0.079) (0.067) (0.047) (0.044)
lag.HealthImpact 0.210 -0.010

(0.331) (0.313)
lag.AssetImpact -0.007 -0.008

(0.006) (0.006)
lag.TMax -0.009 -0.008

(0.07) (0.007)
lag.(High2016 × (TMax ≤ 163)) -0.025 -0.031

(0.036) (0.037)
lag.(High2016 × (163 < TMax ≤ 182)) 0.014 0.009

(0.024) (0.025)
lag.(Low2016 × (182 < TMax ≤ 201)) 0.016 0.013

(0.028) (0.029)
lag.(Low2016 × (201 < TMax)) 0.035 0.040∗

(0.022) (0.022)

Controls Yes Yes Yes Yes
Observations 3,108 3,108 3,108 3,108
Weight Specification WS,28 WS,23 WS,23 WS,28

Model Specification SDM SDM SDM SDM
Estimator GMM/IV GMM/IV GMM/IV GMM/IV

Note 1: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Note 2: Summary impact measures (Pace and LeSage (2006)) are reported in Table 5b.



46 LIAM ELBOURNE

References

Ambinakudige, S. and Parisi, D. (2017). A Spatiotemporal Analysis of Inter-County Migra-

tion Patterns in the United States. Applied Spatial Analysis and Policy, 10(1):121–137.

Angrist, N., Winseck, K., Patrinos, H. A., and Zivin, J. G. (2024). Human Capital and

Climate Change. Review of Economics and Statistics, pages 1–28.

Anselin, L. (1988). Spatial Econometrics: Methods and Models, volume 4 of Studies in

Operational Regional Science. Springer Netherlands, Dordrecht.

Anselin, L. (2022). Chapter 6: Spatial econometrics. In Handbook of Spatial Analysis in the

Social Sciences. Edward Elgar Publishing.

Anselin, L. and Bera, A. K. (1998). Chapter 7: Spatial Dependence in linear Regression

Models with an Introduction to Spatial Econometrics. In Handbook of Applied Economic

Statistics. CRC Press.

Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. (1996). Simple diagnostic tests for

spatial dependence. Regional Science and Urban Economics, 26(1):77–104.

Ardia, D. S., Ringel, E., Ekstrand, V., and Fox, A. (2020). Addressing the Decline of Local

News, Rise of Platforms, and Spread of Mis- and Disinformation Online: A Summary of

Current Research and Policy Proposals.

Arraiz, I., Drukker, D. M., Kelejian, H. H., and Prucha, I. R. (2010).

A Spatial Cliff-Ord-Type Model with Heteroskedastic Innovations: Small and

Large Sample Results. Journal of Regional Science, 50(2):592–614. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9787.2009.00618.x.

ASU Center for Emergency Management and Homeland Security (2023). The Spatial Hazard

Events and Losses Database for the United States.

Bailey, M., Cao, R., Kuchler, T., Stroebel, J., and Wong, A. (2018). Social Connectedness:

Measurement, Determinants, and Effects. Journal of Economic Perspectives, 32(3):259–

280.
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